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The determination of the relaxation of electrons in atomic gases continues to be an im-
portant physical problem. The main interest is the determination of the time scale for the
thermalization of electrons in different moderators and the nature of the time-dependent
electron energy distribution. The theoretical basis for the study of electron thermalization
is the determination of the electron distribution function from a solution of the Lorentz–
Fokker–Planck equation. The present paper considers a detailed comparison of different
numerical methods of solution of the Lorentz–Fokker–Planck equation for the electron dis-
tribution function. The methods include a pseudospectral method referred to as the Quadra-
ture Discretization Method (QDM) which is based on non-standard polynomial basis sets,
a finite-difference method, and a Lagrange interpolation method. The Fokker–Planck equa-
tion can be transformed to a Schrödinger equation, and methods developed for the solution
of either equation apply to the other.

1. Introduction

The study of electron thermalization and transport in both atomic [4,6,12,13,
26,31,32,50,62] and molecular moderators [11,21,28–30,41,47,59,63,66,67] continues
to be an active field of study. The subject has important applications to radiation
chemistry and physics, discharge devices, ionospheric applications, plasma processing
of materials and plasma chemistry. The thermalization of energetic electrons in atomic
and/or molecular moderators proceeds owing to collisions between the electrons and
the constituents of the moderator assumed to be present in large excess. Electron–
electron collisions are assumed not to occur and are not included in the theoretical
analysis. A complete treatment would require the inclusion of elastic and inelastic
collisions, and chemically reactive processes such as ionization and attachment. The
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main interest is to determine the time dependence of the electron energy distribution
function starting from some initial arbitrary distribution function. The time scale for
the relaxation process and the nature of the time-dependent nonequilibrium distribution
function are of importance. The theoretical approach is based on the Boltzmann
equation which for electrons with the small electron to moderator mass ratio can be
approximated by a Fokker–Planck equation (FPE). Also, the anisotropy of the electron
distribution function is expected to be small and two terms in the expansion of the
distribution function in Legendre polynomials is sufficient. A standard procedure for
the definition of the electron relaxation time is the time required to reach 10% or 1%
of the equilibrium energy. Detailed reviews of the current status of the field were
presented by Braglia [3] and by Shizgal et al. [55].

The present paper considers a detailed comparison of several different numerical
techniques in the study of electron thermalization in the inert gases at low initial ener-
gies of the order of several eV. Inelastic collisions are not included and only electron–
atom elastic collisions are required. The initial energy loss by inelastic collisions is
extremely fast and it is the much slower energy exchange by elastic collisions that de-
termines the relaxation time. Although these atomic systems are not complicated, there
is still considerable improvement to be made with the agreement between calculations
and measurements [50]. Also, several interesting phenomena have been predicted the-
oretically. Two unexpected effects have been reported in the course of these studies.
One is the “negative mobility effect” for which the transient electron mobility can be
negative for some initial transient predicted first by Braglia and Ferrari [5] and later
by Shizgal and McMahon [37], and also confirmed with a Monte-Carlo simulation by
Koura [27,28]. The experimental observations of the effect were reported by Warman
et al. [61]. Another effect is the “negative differential conductivity effect” which refers
to the decrease in the electron drift velocity with increasing electric field strength over
a particular field range. It was long recognized as arising from inelastic collisions and,
therefore, should only occur in molecular systems. Calculations of the drift velocity of
electrons in He–Xe and He–Kr mixtures by Shizgal [52] demonstrated that this neg-
ative differential conductivity effect can occur for particular concentrations of these
mixtures. The effect was later confirmed by Nagpal and Garscadden [40] unaware of
the earlier work. There appears to be no experimental confirmation of this effect to
date.

There have been numerous theoretical approaches to the problem of electron
relaxation in the inert gases. The basis for most of the theoretical work is the Boltzmann
equation with realistic data for the electron–atom momentum transfer cross section.
The Boltzmann equation is approximated by a FPE and only two terms in the Legendre
expansion of the angular part of the distribution function is sufficient. The earliest
treatment was carried out by Mozumder [39] and Tembe and Mozumder [58] who
assumed that the electron distribution function remains a local Maxwellian with a
time-dependent temperature. They derived expressions for the rate of change of the
electron temperature from the Boltzmann equation, but the approach did not involve
a solution of the Boltzmann equation. Knierem et al. [25] adapted a moment method
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of solution of the Boltzmann equation used previously in the study of ion transport.
Because of their choice of Burnett functions as basis functions for the expansion of the
distribution function, their solutions did not converge well. Koura [27] developed a
Monte-Carlo simulation to determine the electron velocity distribution function during
the relaxation. Because of the small mass ratio, the computations are very long. Braglia
and co-workers [3] employed a variety of techniques including moment methods, finite-
difference schemes and Monte-Carlo simulations to solve the FPE. Shizgal and co-
workers [34,36,37,54,60] introduced a numerical scheme referred to as the Quadrature
Discretization Method (QDM) for the solution of the FPE.

The QDM was developed by Shizgal [51] for the solution of the integral Boltz-
mann equation and by Shizgal and Blackmore [1] for the solution of differential equa-
tions and in the study of nonequilibrium systems with bistable states [2]. It has been
used extensively in the study of electron relaxation problems [34,36,60], in the solution
of the Schrödinger equation [9,53] and the Navier–Stokes equation [35,64,65]. Details
of the application to the Schrödinger equation are presented in the paper immediately
following [9]. The QDM is a discretization method based on the evaluation of the
solution at a set of quadrature points defined by the roots of the N th order polynomial
of a suitable set orthogonal with respect to some weight function in a specified inter-
val. The main feature of the method is the use of nonclassical polynomials based on a
weight function which closely approximates the solution and, hence, provides for rapid
convergence. In this sense it differs from the usual spectral methods [7,22] which gen-
erally use Fourier series or Chebyshev polynomials. A spectral method refers to the
expansion of the solution in a polynomial basis set, whereas a pseudospectral method
corresponds to the determination of the solution at a set of points that correspond to
the quadrature points associated with the polynomials [7]. These two representations
are equivalent and related by a unitary transformation.

There have been several numerical methods proposed for the solution of such
Fokker–Planck equations. The most widely used method for the numerical solution
of Fokker–Planck equations is a finite-difference method developed some time ago
by Chang and Cooper [8], recently refined by Larsen et al. [33] and Epperlein [17].
Robson et al. [48] and Robson and Pritz [49] proposed a derivative matrix technique,
based on a Lagrange interpolation, for the solution of differential equations. A very
useful discussion of the numerical solution of Fokker–Planck equations was recently
published by Park and Petrosian [45].

The present paper is directed towards a detailed comparison of several differ-
ent numerical methods in comparison with the QDM in the application to electron
thermalization in argon. In particular, the QDM is employed with a quadrature based
on the steady Davydov distribution function as weight function. The Davydov dis-
tribution is characterized by the electron–atom momentum transport cross section
and the electric field strength. We construct a polynomial set orthogonal with the
Davydov weight function. The numerical technique developed by Gautschi [19] re-
ferred to as the Stieltjes procedure is used to generate the orthogonal polynomials and
the associated quadrature weights and points. We employ the QDM with this new
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quadrature in comparison with the speed polynomials, defined on [0,∞] with weight
function w(x) = x2 exp(−x2) used in most of the previous works. We also con-
sider solutions obtained with a finite-difference technique and the differential quadra-
ture based on the Lagrange interpolation discussed by Robson et al. [48]. These au-
thors suggested that their technique based on a Lagrange interpolation is superior to
the QDM.

A comparison of the different discretization schemes is considered in the first
instance with regard to the eigenvalue problem defined by

Lψn(x) = λnψn(x), (1)

where L is the Fokker–Planck operator defined explicitly later, and λn and ψn are
the eigenvalues and eigenfunctions, respectively. We then consider the time evolution
of the electron distribution for some initial distribution, with the discretization of the
time derivative and advancing the solution in time with either an implict or explicit
scheme. The previous work by Shizgal and co-workers [34,36,54,60] considered the
time-dependent solution expressed in terms of the eigenfunctions of the Fokker–Planck
operator.

An outstanding problem with the eigenfunction technique is that it does not
provide a good convergence of the short time dependence if the initial energy is high.
This is somewhat expected, since the initial distribution function is generally taken
to be a delta function or narrow Gaussian at some energy and the expansion of this
initial distribution function in the eigenfunctions of the Fokker–Planck operator is
expected to be slow. Also, the evaluation of the eigenfunctions at the initial energy
is poor for high initial energies. There have been several attempts to overcome this
limitation. Nishigori [42] and Nishigori and Shizgal [43] employed a memory function
technique to determine the electron distribution function for small times. Shizgal
and Nishigori [56] employed the Wentzel–Kramers–Brillouin approximation in the
solution of the eigenvalue problem in order to better approximate the eigenfunctions
and improve the small time behaviour. There are other small time approximations
discussed by Risken and Voigtlaender [46] and by Susuki [57].

Section 2 of the paper defines the model system considered. The different dis-
cretization schemes of the Fokker–Planck operator are outlined in section 3. The
time evolution of the solution obtained with several different time discretizations is
presented in section 4 for the speed discretizations in section 3.

2. The Lorentz–Fokker–Planck equation: electron thermalization

The motivation for the present study arises from the work of Shizgal and co-
workers [3,37,54] on the transient behavior of the distribution function for electrons
dilutely dispersed in a large excess of an inert gas at temperature Tb. As mentioned
in the introduction, there is a continued interest in the calculation and measurement of
the electron relaxation times. Also, these systems provide a useful benchmarking of
different numerical methods.
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The time-dependent anisotropic spatially uniform electron velocity distribution
function is expanded in Legendre polynomials, that is,

f (v, t′) =
∞∑
l=0

fl(v, t′)Pl(cos θ), (2)

where θ is the angle between v and the polar axis chosen in the direction of the electric
field. For the inert gases at low electron energies, for which only elastic collisions
need to be included, only the terms in l = 0 and l = 1 need to be included. With the
use of equation (2) one gets the usual two-term approximation [20,24]

∂f0

∂t′
+
eE

3m

(
∂

∂v
+

2
v

)
f1 =

m

Mv2

∂

∂v

[
v3ν

(
1 +

kTb

mv

∂

∂v

)]
f0, (3)

∂f1

∂t′
+
eE

m

∂f0

∂v
= −νf1, (4)

where m is the electron mass, M is the moderator mass, E is the electric field strength
and the collision frequency ν(v) = nvσ(v), where σ(v) is the momentum transfer cross
section and n is the number density of the moderator. As discussed in a previous
paper [54], we set ∂f1/∂t

′ = 0 and substitute f1 from equation (4) into equation (3).
We also define a dimensionless time t = t′/τ , where

1
τ

=
nm

2M
σ0

√
2kTb

m
(5)

and σ0 is some convenient hard sphere cross section such that σ̂ = σ/σ0. With the
definition of the dimensionless speed variable x =

√
mv2/(2kT ), we get the equation

for f0 given by

∂f0

∂t
=
s2

x2

∂

∂x

[
2x4σ̂f0 +

x2

s2B(x)
∂f0

∂x

]
, (6)

where

B(x) = xσ̂(x) +
(α/s)2

xσ̂(x)
(7)

and s = T/Tb is a scaling factor. In equation (7), the quantity α is a field-strength
parameter given by

α2 =
M

6m

(
eE

nkTbσ0

)2

, (8)

In equation (8), the electric field occurs as the density reduced field, E/n, in units
of 10−17 V cm2 which is a Townsend (Td). The distribution function is written as
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f0(x, t) = D(x)g(x, t), where D(x) is the equilibrium distribution referred to as the
Davydov distribution and given by

f0(x,∞) = D(x) = C exp

[
−2s2

∫ x

0

(x′)2σ̂

B(x′)
dx′
]

, (9)

where C is a normalization constant. The FPE is of the form [37]

∂g(x, t)
∂t

= −Lg(x, t), (10)

where

L =
1
s

(
−A(x)

∂

∂x
+B(x)

∂2

∂x2

)
(11)

and

A(x) = 2x2σ(x)− 2B(x)
x
−B′(x). (12)

The FPE for this problem can also be rewritten in the usual form

∂P (x, t)
∂t

=
1
s

∂

∂x

[
A(x)P (x, t) +

∂B(x)P (x, t)
∂x

]
(13)

or
∂P (x, t)
∂t

= −∂J
∂x

, (14)

where J(x, t) = −(A(x)P (x, t) + ∂B(x)P (x, t)/(s∂x)) is the flux and vanishes for
P0(x) = x2D(x). If we set P (x, t) = D(x)g(x, t), then the FPE is of the form

∂g(x, t)
∂t

=
1

sx2D(x)
∂

∂x

[
x2D(x)B(x)

∂g(x, t)
∂x

]
. (15)

The method of solution employed in the previous works [3,37,54] involved the
formal solution of equation (10) for g(x, t) as given by

g(x, t) = e−Ltg(x, 0). (16)

If the initial distribution g(x, 0) is expanded in the eigenfunctions of L, that is,

g(x, 0) =
∞∑
n=0

anψn(x), (17)

then the time evolution is given by

g(x, t) =
∞∑
n=0

anψn(x)e−λnt, (18)

where

Lψn(x) = λnψn(x) (19)
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and the an coefficients are determined from the intial condition. The average transport
properties can be evaluated and, for example, the electron energy relative to the thermal
energy at equilibrium is given by

E(t)
Eth

=
∞∑
n=0

bne−λnt. (20)

If the independent variable, x, is transformed to new variable, y,

y =

∫ x

0

1√
B(x′)

dx′, (21)

and we define φn(y) by

φn(y) =
√
x2D

(
x(y)

)
ψn
(
x(y)

)
, (22)

then the Fokker–Planck eigenvalue equation (equation (19)) is transformed into a
Schrödinger equation

−d2φn(y)
dy2 + V (y)φn(y) = λnφn(y). (23)

The potential function in the Schrödinger equation is derived from the drift and diffu-
sion coefficients in the Fokker–Planck equation. If x2D(x) = exp(−

∫
W (y) dy), then

V (y) is given by

V (y) =
1
4
W 2 − 1

2
dW
dy

, (24)

where

W (y) =
A(x(y))√
B(x(y))

+
dB/dy

2B(x(y))
. (25)

The potential functions obtained in this way belong to the class of potentials that occur
in supersymmetric quantum mechanics [10,14]. Examples of such potential functions
were shown in a previous paper [54]. We could consider the determination of the
eigenvalues with the solution of the Schrödinger equation (equation (23)), as done
by Shizgal and Chen [53] and in the paper immediately following [9]. However, the
accuracy we consider in this paper is far greater than can be obtained with the trans-
formation to the Schrödinger equation because of a loss of accuracy in the numerical
integration of equation (21).

3. Numerical solution of the Fokker–Planck eigenvalue problem

3.1. The Quadrature Discretization Method (QDM)

The solution of differential equations by differential quadrature methods is based
on the representation of the derivative operator, d/dx, in a discrete basis. The distribu-
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tion function is solved at a set of points which are the quadrature points, that is, the roots
of the N th order polynomial of the set orthogonal with respect to some weight func-
tion, w(x). The method has been discussed at length in previous papers [2,37,53,54].
In this section, we present a brief outline of the QDM.

Consider a set of polynomials Rn(x), orthogonal with respect to the weight
function w(x) on the interval [a, b], that is,∫ b

a
w(x)Rn(x)Rm(x) dx = δnm. (26)

The numerical integration of some function f (x) with weight function w(x) is given
by ∫ b

a
w(x)f (x) dx ≈

N∑
i=1

wif (xi), (27)

where wi and xi are the weights and points of the quadrature, respectively. The
points are the roots of the N th order polynomial, i.e., RN (xi) = 0. The discrete
representation of a function f (x) is the values of f (x) at the discrete points, that
is, f (xi) = f̃ (xi)/

√
wi. The factor

√
wi symmetrizes the transformations discussed

below. The representation of f (x) is given by the expansion coefficients, an, of f (x)
in the basis set {Rn(x)}. There is a unitary (or orthogonal) transformation between
the discrete representation and the representation in the polynomial basis, that is,

f̃ (xi) =
N−1∑
n=0

√
wiRn(xi)an, (28)

an =
N∑
j=1

√
wjRn(xj)f̃ (xj). (29)

The matrix elements of the symmetric transformation are given by

Tin =
√
wiRn(xi). (30)

If in equation (28) xi is replaced with x and equation (29) is used for an, then
one obtains an N th order interpolation for f (x) given by

f (x) =
N∑
j=1

I (N )
j (x)f (xj), (31)

where the interpolation function, I (N )
j (x), is given by

I (N )
j (x) = wj

N∑
n=0

Rn(x)Rn(xj). (32)
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The algorithm for differentiation in the discrete basis is given by differentiating equa-
tion (31) and using equation (32), and one has for f̃ (xi) that

df̃ (xi)
dx

=
N∑
j=1

Dij f̃ (xj), (33)

where the derivative operator in equation (33), Dij =
√
wi/wj(dI

(N )
j (x)/dx)|x=xi , is

given by

Dij =
√
wiwj

∑
n

R′n(xi)Rn(xj). (34)

The algorithms (equations (33) and (34)) can be used to reduce a general differential
operator equation to a set of coupled algebraic equations in the function evaluated
at the quadrature points. One important aspect of this discretization procedure is to
preserve the self-adjoint property of the Fokker–Planck operator, that is, the discretized
representation of the Fokker–Planck operator should be symmetric. Another important
consideration is the choice of mesh points (or, equivalently, basis functions) determined
by the quadrature weight function, w(x).

A useful choice of weight function is the equilibrium distribution P0(x), for which
we have the basis set {Qn(x)} defined by

Qn(x) =

[
w(x)
P0(x)

]1/2

Rn(x), (35)

which satisfies the orthogonality relation∫ ∞
0

P0(x)Qn(x)Qm(x) dx = δnm. (36)

The matrix elements of the operator L in this basis set are given by

Lnm =

∫ ∞
0

P0(x)Qn(x)LQm(x) dx, (37)

which with an integration by parts becomes

Lnm = −
∫ ∞

0
P0(x)B(x)Q′n(x)Q′m(x) dx, (38)

where the integrated term determines the boundary conditions which corresponds to
zero flux at both boundaries, so that

x2D(x)B(x)
∂g(x, t)
∂x

∣∣∣∣
x=0

= x2D(x)B(x)
∂g(x, t)
∂x

∣∣∣∣
x=∞

= 0. (39)
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In terms of the polynomials {Rn(x)} (equation (35)), and weight function w(x) we
have with equation (38)

Lnm = −
∫ ∞

0
B(x)w(x)

[
d

dx
+ h(x)

]
Rn(x)

[
d

dx
+ h(x)

]
Rm(x), (40)

where

h(x) =
w′(x)
2w(x)

− [x2D(x)]′

2x2D(x)
. (41)

If we now use the quadrature rule for the weight w(x), we have that

Lnm = −
N∑
k=1

B(xk)wk
[
R′m(xk) + h(xk)Rm(xk)

][
R′n(xk) + h(xk)Rn(xk)

]
. (42)

If the derivatives are evaluated with the QDM algorithm (equation (33)), we have that

Lmn =−
N∑
j=1

√
wjRm(xj)

N∑
i=1

√
wiRn(xi)

×
N∑
k=1

B(xk)
[
Dki + h(xk)δik

][
Dkj + h(xk)δjk

]
. (43)

With the transformation between the representation in a basis set and the discrete
representation of the function, we have the QDM representative in the discrete basis
given by

Lij = −
N∑
k=1

B(xk)[Dik + hiδik][Djk + hjδjk]. (44)

Further details of the derivations in this section have appeared in previous papers
[1,2,53,54].

3.2. Lagrange interpolation (LI)

In a recent paper, Robson et al. [48] suggested that the use of a Lagrange inter-
polation algorithm with a uniform grid in place of an interpolation based on a set of
orthogonal polynomials would be more efficient. Their result, previously obtained by
other workers [18], based on the Lagrange interpolation polynomial, is given by

li(x) =

∏N−1
j=1 (x− xj)∏N−1
j 6=i=1(xi − xj)

, (45)
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for which li(xj) = δij , also satisfied by I (N )
i (xj) of equation (32). The points can be

chosen anywhere on the interval of interest as the roots of the polynomial

PN (x) = kN

N−1∏
j=1

(x− xj), (46)

where kN is the coefficient of xN . It, therefore, follows that

li(x) =
PN (x)

(x− xi)P ′N (xi)
, (47)

and the derivative matrix is

Dij = l′i(xj). (48)

We use the form of the Fokker–Planck operator given by equation (15) and write the
representation of the Fokker–Planck operator in the form

Lij =
[(x2

iB(xi)D(xi))′Dij + x2
iB(xi)D(xi)]D

(2)
ij

x2
iD(xi)

, (49)

which is not symmetric as is the QDM representation (equation (44)). Robson et
al. [48] suggested that this is preferred, since the evaluation of the derivative matrix
is faster with equations (47) and (48) rather than with equation (34), and the free
choice of the grid points is advantageous. They evaluated the accuracy of the QDM
and Lagrange differentiation algorithms by considering the calculation of the second
derivative of some arbitrary function. In a subsequent paper, Robson and Pritz [49]
applied their approach to the solution of several other problems.

3.3. Finite-difference (FD) scheme

The self-adjoint form of the Fokker–Planck equation (equation (15)) was shown to
be consistent with zero flux at the boundaries (equation (39)). This boundary condition
is also related to particle conservation

∂

∂t

∫ ∞
0

D(x)g(x, t)x2 dx = x2D(x)B(x)
∂g(x, t)
∂x

∣∣∣∣∞
x=∞

= 0. (50)

Any useful discretization would have to ensure particle conservation which yields
λ0 = 0. We discretize the speed variable according to 0 = x1 < x2 < x3 < · · · <
xN = xmax with xi+1 = xi + ∆x and ∆x = xmax/(N − 1), where xmax is the speed
point chosen large enough, so that the flux boundary condition is satisfied. We also
introduce a shifted grid at the midpoint defined by xi+1/2 = xi+∆x/2. With a centered
difference for the derivative

∂g(x, t)
∂x

∣∣∣∣
xi+1/2

≈ g(xi+1, t)− g(xi, t)
∆x

, (51)
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the finite-difference representation of the eigenvalue problem is

N∑
j=1

Lijφn(xi) = λnφn(x), (52)

where

Lii =
1

(∆x)2

x2
iDiBi + x2

i+1Di+1Bi+1

x2
i+1/2Di+1/2

, i = 1, . . . ,N , (53)

Li,i−1 =− 1
(∆x)2

x2
iDiB

2
i

x2
i+1/2Di+1/2

, i = 2, . . . ,N , (54)

Li,i+1 =− 1
(∆x)2

x2
i+1Di+1Bi+1

x2
i+1/2Di+1/2

, i = 1, . . . ,N − 1, (55)

with the understanding that the first term in the fraction on the RHS of equation (53)
vanishes for i = 1 and the second term vanishes for i = N in order to enforce the
boundary conditions.

4. Time-dependent solutions of the Fokker–Planck equation

The previous work on the thermalization of electrons employed the eigenfunction
expansion solution of the FPE. One of the difficulties with this approach is that the
calculation converges poorly for very small times and large initial energies for an
initial delta function distribution. The reason for this is that the expansion coefficients
in equation (17) require the calculation of the eigenfunctions at large argument and
these are not accurately calculated. This aspect of the eigenfunction expansion was
discussed at length in previous papers. In this section we use a time discretization in
place of the eigenfunction expansion.

4.1. Finite-difference time discretization

Following Larsen et al. [33], we discretize the velocity variable as described
earlier in section 3. We set t = n∆t for the discrete time variable and use a backward
Euler difference for the time derivative, that is,

∂g(x, t)
∂t

=
gn+1
i − gni

∆t
, (56)

where gni = g(xi+1/2,n∆t). The FD version for the time-dependent FPE (equa-
tion (15)) becomes

∂g(x, t)
∂t

=
gn+1
i − gni

∆t
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=
x2
i+1Di+1Bi+1(gn+1

i+1 − g
n+1
i )− x2

iDiBig
n+1
i − gn+1

i−1

(∆x)2x2
i+1/2Di+1/2

, (57)

which after rearranging terms can be written as

N∑
j=1

Vijg
n+1
j = gni , (58)

where V is a tridiagonal matrix whose elements are given by

Vii = 1 + ∆tLii, i = 1, . . . ,N , (59)

Vi,i−1 = ∆tLi,i−1, i = 2, . . . ,N , (60)

Vi,i+1 = ∆tLi,i+1, i = 1, . . . ,N − 1. (61)

The new values of the distribution gn+1
i , i = 1, . . . ,N , are then obtained from equa-

tion (59) by inverting V . Notice that the matrix V is diagonally dominant, i.e.,
|Vii| > |Vi,i−1| + |Vi,i+1|, and that the off-digonal elements are negative; therefore,
if gni > 0 for all i, then gn+1

i > 0 for all i, and the positivity of the distribution is
preserved in time as mentioned by Larsen et al.

The choice of a backward Euler difference for the time derivative leading to an
implicit scheme is dictated by stability arguments. For an explicit scheme, it can be
easily seen that the matrix elements are not uniformly bounded functions of x near
x = 0 when an electric field is present (α 6= 0). We also observed that, for an explicit
scheme, the zero eigenvalue is inaccurate and, hence, an explicit scheme would lead
to unphysical behaviour and the relaxation to equilibrium is not guaranteed.

4.2. QDM and Lagrange interpolation

The discretized version of equation (10) becomes

gn+1
i − gni

∆t
= Lijg

n+1
j , (62)

where Lij is the matrix representation of the Fokker–Planck operator, given by either
equation (44) or equation (49). This results in the following implicit scheme for the
time evolution of the distribution function given by

gn+1
j =

N∑
i=1

[δij − ∆tLij]−1gni . (63)

The discretized form of Lij for the two cases are as given previously.

5. Calculations and results

We consider the relaxation of electrons in argon for which there are several pub-
lished electron–argon momentum transfer cross sections. Since this paper is directed
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Figure 1. Energy variation fo the momentum transfer cross section for electron–argon collisions. Solid
curve is the fit given by equation (64). The dashed and dotted curves are the cross sections reported by

Haddad and O’Malley [23] and Mozumder [39], respectively.

towards a comparison of numerical methods, we chose to fit the actual cross section
to a simple analytic form given by

σ(E) =
(
7.8945 − 3.0397

√
E + 30.7265E

)/(
1 + 5.1640

√
E
)
, (64)

where E is in eV and σ(E) is in ×10−16 cm2. The previous works [34,36,37,54]
generally employed the actual tabulated cross sections and a cubic spline interpolation.
In this paper, we use the simple analytic model to avoid introducing additional errors
in the spline fitting of the cross section, however small they are in practice. Figure 1
shows the energy dependence of this cross section given by equation (64) (solid curve)
in comparison to the cross section by Mozumder [39] (dotted curve) and by Haddad
and O’Malley [23] (dashed curve). The fit to the Ramsauer–Townsend minimum is
particularly accurate. We have chosen to study Ar, because the electron-Ar cross
section has this strong energy dependence.

With the cross section specified, the FPE is well defined. The convergence of
the eigenvalues of the Fokker–Planck operator for the three different discretizations,
FD, LI and QDM, with speed points is shown in table 1 for zero applied electric
field. In this case, the Davydov distribution reduces to a Maxwellian and the “speed
points” that are used are defined by the weight function w(x) = x2 exp(−x2) [51].
For the FD method and the LI, the semi-infinite range has to be cut off at some
xmax as indicated in the footnote to the table. The QDM has an additional flex-
ibility in terms of the scaling parameter, s, which can be increased or decreased
to spread the points over a wider range or to create a denser grid near the ori-
gin. The value of s listed in the table optimizes the rate of convergence. As can
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Table 1
Comparison of the convergence of eigenvalues with FD, LI, and QDM approaches for elec-

trons in argon.a

N λ1 λ2 λ3 λ5 λ7

FDb

10 4.2065018 6.0252130 7.7433925 14.926823 30.951015
20 3.7779542 5.9687808 8.7864926 15.983947 23.109246
30 3.7135707 5.9512106 8.8741400 16.789326 26.454696
50 3.6823834 5.9423225 8.9142694 17.157737 27.716141
70 3.6740821 5.9399242 8.9247708 17.254000 28.044467

100 3.6697460 5.9386723 8.9302677 17.304654 28.219512
120 3.6684861 5.9383105 8.9318775 17.319588 28.271937

LIc

20 3.6192863 6.2197787 8.7710260 19.265133 43.300454
30 3.6680821 5.9435491 8.8431719 15.314643 28.361252
40 3.6656115 5.9368816 8.9387666 17.259492 25.748304
50 3.6656267 5.9373678 8.9346936 17.347228 28.326278
60 3.6656280 5.9373511 8.9346356 17.338753 28.283583
70 3.6656258 5.9372353 8.9348420 17.343482 28.271660

100 3.6656279 5.9373500 8.9346399 17.338821 28.276115

QDM (speed)d

10 6.1840221 13.3297100
20 3.6934786 6.0043920 9.1035057 18.866842 38.168512
30 3.6656545 5.9374256 8.9349024 17.347670 28.303877
32 3.6656352 5.9373816 8.9347739 17.338882 28.304116
35 3.6656288 5.9373529 8.9346425 17.339099 28.279519
38 3.6656282 5.9373510 8.9346407 17.338853 28.275974
40 3.6656281 5.9373510 8.9346395 17.338803 28.276495
42 5.9373509 8.9346395 17.338806 28.276138
45 8.9346393 17.338802 28.276163
50 28.276131
60 28.276129

a E/n = 0.0 Td, λn in units of τ−1 = (nm/(2M ))σ0

√
2kTb/m.

b FD with xmax = 4.8.
c LI with Legendre grids and xmax = 8.0.
d Speed with scale factor, s2 = 0.31.

be seen from the results in the table, the convergence of the λn with the QDM is
superior to the other methods. It is useful to note that the results in table 1 to the
maximum orders shown are reasonably consistent. For example, for λ7, the LI with
100 points and the QDM with 60 points differ by only 1 in the 7th significant fig-
ure.

With an increase in the electric field, the steady distribution that is the Davydov
distribution peaks at higher reduced speed as shown in figure 2. Curve (a) in figure 2
is for E/n = 0 and corresponds to a Maxwellian. The other two curves are Davydov
distributions at E/n = 0.25 and 0.50 Td, respectively. Table 2 shows the convergence
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Figure 2. The energy variation of the steady electron Davydov distribution for different electric field
strengths with E/n equal to (a) 0, (b) 0.25 and (c) 0.50 Td.

of the eigenvalues with the different discretizations for an electric field strength of
E/n = 0.25 Td. We show the results with the QDM for both speed points and
quadrature points with the Davydov distribution. The FD and LI schemes require
much larger values of xmax and the scaling factor for the QDM with speed points is
also increased. The results in table 2 for the convergence of the eigenvalues for the four
different schemes demonstrates that the QDM based on the Davydov distribution as the
weight function provides the fastest convergence. Excellent agreement is obtained for
the eigenvalues shown with LI and QDM with speed and Davydov weight functions.
This is also demonstrated in table 3 for a still larger electric field, E/n = 0.50 Td.
The convergence of the eigenvalues is still fastest with the QDM and the Davydov
weight function.

Figure 3 shows the variation of lnλn versus n for E/n = 0.25 Td for different
numbers of points: (a) N = 10, (b) N = 20, (c) N = 40 and (d) N = 60. Figure 3(A)
shows the results for QDM with Davydov points, whereas figure 3(B) is for the FD
method. The portions of these curves that coincide for the converged eigenvalues
gives an indication of the actual variation of λn versus n. At some value of n for a
given N , the curves depart rather quickly from this converged λn versus n variation.
Figure 3 shows lnλn, so that the higher order eigenvalues, which are not converged,
are very large. Notice that, with the FD method, the results given by curves (a)–(c) do
not coincide for lower values of n. A more detailed comparison of the results with the
FD and the QDM is shown in figure 4 for N = 40 and N = 60. The QDM provides
accurate results for small n, but the nonconverged eigenvalues are much larger than
the eigenvalues obtained with the FD method.
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Table 2
Comparison of the convergence of eigenvalues with FD, LI, and QDM approaches for elec-

trons in argon.a

N λ1 λ2 λ3 λ5 λ9

FDb

10 .33941476(3) .74461440(3) .14108440(4) .54032190(4)
30 .34231218(3) .86931571(3) .14919656(4) .28941745(4) .56952524(4)
50 .34235202(3) .87004783(3) .14966735(4) .29389261(4) .62575032(4)
70 .34235623(3) .87011773(3) .14971979(4) .29444701(4) .63287130(4)

100 .34235733(3) .87013221(3) .14973401(4) .29461716(4) .63581345(4)

LIc

15 .34173489(3) .86293925(3) .14551342(4) .30569352(4) .67165473(4)
20 .34236128(3) .87010035(3) .14970006(4) .29462674(4) .54615085(4)
22 .34235818(3) .87011456(3) .14971715(4) .29421504(4) .51149006(4)
25 .34235748(3) .87012965(3) .14973782(4) .29463182(4) .63175395(4)
28 .34235767(3) .87013188(3) .14973904(4) .29470714(4) .63121553(4)
30 .87013172(3) .14973885(4) .29469742(4) .63553764(4)
35 .29469732(4) .63575199(4)
40 .29469729(4) .63573630(4)
50 .63573638(4)

QDM (speed)d

20 .34289609(3) .87143973(3) .15394656(4) .46817396(4)
25 .34236587(3) .87030912(3) .14977423(4) .30528649(4)
30 .34235769(3) .87013265(3) .14974718(4) .29507212(4) .73053706(4)
35 .34235767(3) .87013179(3) .14973895(4) .29474139(4) .65021538(4)
38 .87013172(3) .14973887(4) .29470361(4) .63971760(4)
40 .87013171(3) .14973885(4) .29469863(4) .63953852(4)
50 .29469729(4) .63577734(4)
60 .29469729(4) .63573643(4)
70 .63573638(4)

QDM (Davydov)

5 .34427329(3) .89684722(3)
8 .34235742(3) .87016409(3) .15103419(4)

10 .34235770(3) .87014349(3) .14975221(4) .34716352(4) .79385157(5)
12 .34235768(3) .87013369(3) .14974456(4) .29813215(4) .45048506(5)
15 .34235768(3) .87013174(3) .14973894(4) .29491739(4) .14263194(5)
18 .34235767(3) .87013172(3) .14973886(4) .29470191(4) .65877825(4)
20 .14973885(4) .29469777(4) .64560309(4)
25 .29469729(4) .63582864(4)
30 .29469729(4) .63573676(4)
35 .63573638(4)

a E/n = 0.25 Td, τn in units of τ−1 = (nm/(2M ))σ0

√
2kTb/m.

b FD with xmax = 13.6.
c LI with Legendre grids and xmax = 13.7.
d Speed with scale factor, s2 = 2.65.
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Table 3
Comparison of the convergence of eigenvalues with FD, LI, and QDM approaches for elec-

trons in argon.a

N λ1 λ2 λ3 λ5 λ9

FDb

10 .53872902(3) .11995596(4) .21483903(4)
20 .54347279(3) .13659116(4) .23212179(4) .42746820(4)
30 .54379648(3) .13711155(4) .23515801(4) .45764519(4) .91334196(4)
40 .54385693(3) .13719719(4) .23567357(4) .46251932(4) .97707943(4)
50 .54387599(3) .13722003(4) .23581409(4) .46390824(4) .99455015(4)
70 .54388811(3) .13723136(4) .23588534(4) .46465072(4) .10047569(5)
80 .54389045(3) .13723291(4) .23589549(4) .46476416(4) .10067101(5)

100 .54389289(3) .13723416(4) .23590381(4) .46486298(4) .10089314(5)

LIc

20 .54391212(3) .13724848(4) .23600394(4) .47224649(4)
22 .54389133(3) .13722978(4) .23587963(4) .46161520(4)
25 .54389617(3) .13723542(4) .23591640(4) .46538858(4)
28 .54389650(3) .13723486(4) .23590899(4) .46493478(4) .10535303(5)
30 .54389641(3) .13723483(4) .23590903(4) .46494517(4) .10077973(5)
35 .23590902(4) .46494433(4) .10084415(5)
40 .46494430(4) .10083041(5)
45 .10083027(5)
50 .10083026(5)

QDM (speed)d

20 .56951180(3) .16108781(4) .33917322(4)
25 .54402094(3) .13729568(4) .23661662(4) .55979996(4) .34590212(5)
30 .54389772(3) .13723712(4) .23591362(4) .46947691(4) .14922917(5)
35 .54389641(3) .13723487(4) .23590995(4) .46505376(4) .10727918(5)
40 .13723483(4) .23590902(4) .46494732(4) .10146367(5)
50 .46494431(4) .10083266(5)
60 .46494430(4) .10083026(5)
70 .10083026(5)

QDM (Davydov)

5 .54572180(3) .13954983(4)
8 .54389718(3) .13724642(4) .23795336(4)

10 .54389639(3) .13723495(4) .23593244(4) .51559993(4)
12 .54389642(3) .13723488(4) .23591053(4) .46958088(4)
15 .13723483(4) .23590913(4) .46512740(4) .26604484(5)
18 .23590902(4) .46494607(4) .10272763(5)
20 .46494450(4) .10175485(5)
25 .46494430(4) .10083568(5)
30 .10083027(5)
35 .10083026(5)

a E/n = 0.50 Td, λn in units of τ−1 = (nm/(2M ))σ0

√
2kTb/m.

b FD with xmax = 16.1.
c LI with Legendre grids and xmax = 17.0.
d Speed with scale factor, s2 = 3.1.
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Figure 3. Variation of the eigenvalues versus the index n with the (A) QDM and (B) FD method. The
number of grid points, N , is equal to (a) 10, (b) 20, (c) 40 and (d) 60.

Figure 5 shows a comparison of the variation of the error, ∆E(N )
n , given by

∆E(N )
n =

∣∣E(N )
n −Eexact

n

∣∣, (65)

in the calculated values of the eigenvalues λ2 and λ5 versus the number of quadra-
ture or grid points. The “exact” result is taken to be the results with the QDM and
70 Davydov points. For the QDM (figure 5(A)), the error decreases rapidly with in-
creasing N and the semi-logarithmic plot is nearly-linear. The convergence is nearly
exponential with increasing N and “spectral” accuracy is said to be satisfied [7,18,22].
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Figure 4. Same as figure 3 with the solid curves the QDM results and the dashed curves the FD results,
with N equal to 40 and 60.

By contrast, the decrease in the error for the FD method is much slower. One sur-
prising result is the oscillations in the curves in figure 5(A). If a variational theo-
rem holds in this application, the eigenvalues for a particular N should be an up-
per bound for the actual eigenvalue and the convergence should be monotonic from
above.

We also show the convergence of two eigenfunctions at the intermediate field
studied, E/n = 0.25 Td. Figures 6 and 7 show the convergence of the eigenfunctions
ψ3(x) and ψ7(x) versus the number of quadrature points retained. The solid curve
is the result using the QDM with the Davydov distribution as weight function and
N = 70. This is considered to be the converged or exact result against which the
lower order solutions are compared. The convergence of the QDM with Davydov
points is exceptionally rapid, and very good agreement is obtained with just N = 8.
The FD results are nonmontonic in that the results for N = 10 appear in less agreement
with the converged eigenfunctions than for N = 8. All the methods give converged
eigenfunctions for N = 30. The results for ψ7 shown in figure 7, are comparable,
except that the convergence with the FD and LI are quite poor for lower order. These
require at least N = 30 to give reasonable results. The QDM results show nearly-
converged results with N = 20.

The time-dependent electron distribution was determined with an initial Gaussian
distribution at some initial energy,

f0(x, 0) = Nx2 exp
(
−α(x− x0)2), (66)

where α = 4 and x0 = 9.5, and N is a normalization constant. The choice of
the parameters is arbitrary. In the previous work, the time dependence was deter-
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Figure 5. Variation of the error in λ2 and λ5 versus the number of grid points, N , with the (A) QDM
and (B) FD method.

mined in terms of the expansion in the eigenfunctions (equation (18)). This is a useful
method, except that it can give poor results for short times. The reason for this is
that the short-time behavior is controlled by the largest eigenvalues which are not
converged. Also, the coefficients that fit the distribution function to the initial dis-
tribution are evaluated with the eigenfunctions which are not accurately calculated
at the highest energies [42,43,56]. Instead of the eigenfunction expansion for the
time-dependent solution, we have here employed the FD discretization of the time
derivative as described in section 4.1. The condition number [7,18,22] of the ma-
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Figure 6. Convergence of the eigenfunction ψ3 versus the number of grid points, N , for the LI, FD, and
QDM techniques.

trix representative of the Fokker–Planck operator is defined by λmax/λ1. The condi-
tion number for the QDM is larger than for the FD method (figures 3 and 4), and
the maximum time step in an explicit time integration would be smaller for the
QDM than for the FD method. However, the time integrations in this paper were
all carried out with an implicit method. For higher-dimensional problems, an explicit
method may have to be used because of the greater computer costs of the implicit
method.

The time evolution of the electron distribution function was obtained with the FD
scheme with 100 points and is shown in figure 8 at several times for E/n = 0.25 Td.
The initial distribution is labelled by (a) and the steady Davydov distribution is labelled
by (e). The time evolution of the average electron energy calculated with this time-
dependent distribution function is shown in figure 9. Although the FD discretization
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Figure 7. Convergence of the eigenfunction ψ7 versus the number of grid points, N , for the LI, FD, and
QDM techniques.

of the Fokker–Planck operator gives the slowest convergence of the eigenvalues, it
provides the most reliable results for the time evolution determined as described in
section 4.2. This is because the discretization guarantees positivity of the electron
distribution function at all times. The other schemes give oscillations in the distribution
function, particularly at small times.

We show the convergence of the distribution function at three different times in
figures 10–12. For the very short time, t = 0.00025 (figure 10), the results with the
LI scheme denoted by the asterisks (*) gives the worst convergence. The results with
N = 10, 20 and 30 are not converged to the exact result. The QDM results are an
improvement but give oscillatory and negative distributions with a small number of
points. All three discretizations give accurate results with N = 30 in figure 10(D). For
the intermediate time, t = 0.001 (figure 11), the LI method still gives poor results with
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Figure 8. Time variation of the electron distribution function calculated with the FD method and 100
points. The curve labelled (a) is the initial Gaussian distribution and the curve labelled (e) is the steady
Davydov distribution. The other curves correspond to reduced times equal to (b) 0.00025, (c) 0.001 and

(d) 0.004.

Figure 9. Time variation of the average electron energy.

a small number of points, but there is an improvement in the results with the QDM.
In fact, the QDM results appear to be marginally better than the FD near the peak of
the distribution. For the longest time, t = 0.004 (figure 12), the LI discretization still
shows considerable error at low order even with 20 points. All three discretization
methods give good agreement with 30 grid points.
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Figure 10. Convergence of the electron distribution at short times, t = 0.00025, with the different
discretizations. The solid line is the result with the FD method and 100 points. The results with the LI,
FD and QDM are denoted by asterisks, diamonds and solid symbols, respectively. The number of grid

points, N , is equal to (A) 10, (B) 15, (C) 20 and (D) 30.

6. Summary

In this paper, we have considered a comparison of several numerical methods for
the solution of the Lorentz–Fokker–Planck equation for the thermalization of electrons
in argon. We have compared (1) the Quadrature Discretization Method (QDM) with
quadrature points based on speed polynomials orthogonal with respect to the weight
function w(x) = x2e−x

2
; (2) the QDM with quadrature points based on nonclassical

polynomials orthogonal with respect to the Davydov distribution; (3) a discretization
based on the Lagrange interpolation formula; and (4) a finite-difference scheme. The
convergence of the eigenvalues with the quadrature points based on the Davydov dis-



316 K. Leung et al. / QDM for the Fokker–Planck equation

Figure 11. Convergence of the electron distribution at moderate times, t = 0.001; see caption for
figure 10.

tribution as weight function was superior to the other methods. The time evolution
of the electron distribution function was evaluated with an implicit time integration
for all four discretization schemes. The finite-difference scheme provided the best
results for a given number of grid points. The reason for this is that the algorithm
used preserved the positivity of the distribution function. The Lagrange interpola-
tion provided the worst results. The QDM provided results intermediate between the
finite-difference method and the Lagrange interpolation. Further work is in progress
to develop an algorithm based on the QDM that will preserve positivity of the distri-
bution function. We will also consider a preconditioner [7,18,22] for the QDM matrix
representative of the Fokker–Planck operator so as to reduce the condition number of
the matrix.
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Figure 12. Convergence of the electron distribution at moderate times, t = 0.004; see caption for
figure 10.
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